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0 Overview

Last class, we talked about the task of distinguishing between 2 known distributions. For
today and for the next few lectures, we will talk about sublinear algorithms where the main
objects being tested are probability distributions.

The first question is, what does “linear” mean in “sublinear algorithms” in this context?
Today, we will talk about how we can learn a discrete distribution with “linearly” many
samples.

1 Problem Setting

We have an unknown probability distribution D over the set {1, . . . , n}, and we get m
samples x1, . . . xm from D, assumed to be iid.

Tasks we might be interested in:

• Learn (approximately) the distribution D;

• Test if D has property P vs ε-far from P;

• Estimate functions or parameters of D (we have already seen examples of this, for
example mean estimation)

We care about the sample complexity m required.

What can we do with linearly many (linear as to the size of the domain; so, O(n)) samples?

Today, we will show that we can learn D to within ε in total variation distance. Specifically,
our algorithm will output estimation D̂ such that dTV(D̂,D) ≤ ε with probability at least

1 − δ, using Θ
!
n+log 1

δ
ε2

"
samples. In this lecture we will show both the upper and lower

bound. Note that the log 1
δ term here is additive, not multiplicative. This means we are

not just repeating an algorithm log 1
δ many times, which would not be the optimal strategy

(even if we figure out how to combine the output distributions from multiple runs).

2 Upper Bound

Algorithm 12.1 Take x1, . . . , xm drawn iid from D̂, with m = O
!
n+log 1

δ
ε2

"
. Return the

empiricial distribution

D̂i =
|{xj = i}|

m

Theorem 12.2 Algorithm 12.1, on input m = O
!
n+log 1

δ
ε2

"
samples, return D̂ with dTV(D̂,D) ≤

ε with probability at least 1− δ.
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Note: when we say “with probability at least 1−δ”, the randomness comes from the random
sampling of x1, . . . , xm; though if we use some other algorithm with randomization within
the algorithm, that could also add to the randomness.

Hint for the proof: m = O

#
1
ε2
log 1

δ
2n

$

Proof. Observe that, by the definition of total variation distance,

dTV(D̂,D) ≥ ε ⇐⇒ ∃S ⊂ [n] s.t. D̂(S)−D(S) ≥ ε

We could take the union bound over all 2n possible S ⊆ [n].

Fix S, consider si = 1{xi ∈ S}, the indicator variable for whether xi is in the set S, then
si is drawn from Bernoulli(D(S)).

Apply Hoeffding’s:

P
!
D̂(S)−D(S) ≥ ε

"
= P

#
1

m

%
si ≥ E

&
1

m

%
si

'
+ ε

$
≤ e−Θ(mε2) =

δ

2n

By union bound over all S,

P
!
dTV(D̂,D) < ε

"
= P

!
∀S ⊂ [n], D̂(S)−D(S) < ε

"
≥ 1− δ

Note: similar to JL analysis, we are union bounding over a lot of failure events that happen
with tiny probability. This analysis gives the same additive log 1

δ term.

3 Lower Bound

First question: how to prove a lower bound Ω
!
n+log 1

δ
ε2

"
, which is a sum of two terms?

Idea: Prove two lower bounds Ω
(
n
ε2

)
and Ω

!
log 1

δ
ε2

"
, which would give us a lower bound of

Ω

*
max

*
n

ε2
,
log 1

δ

ε2

++
= Ω

*
n+ log 1

δ

ε2

+

We first prove the lower bound Ω
!
log 1

δ
ε2

"
.

Consider the problem of distinguishing Bernoulli(12 − ε) vs Bernoulli(12 + ε) on elements
{1, 2} ⊆ [n] with probability at least 1− δ.

Recall that

d2H

#
B

#
1

2
+ ε

$
, B

#
1

2
− ε

$$
= O

(
ε2
)

and apply Theorem 11.9, we get that successfully distinguishing between Bernoulli(12 − ε)

vs Bernoulli(12 +ε) on elements {1, 2} ⊆ [n] with probability at least 1−δ requires Ω
!
log 1

δ
ε2

"
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samples. Since dTV

(
B
(
1
2 + ε

)
, B

(
1
2 − ε

))
= 2ε, we know that it requires at least Ω

!
log 1

δ
ε2

"

samples to learn D̂ to within ε of D with probability at least 1− δ.

We then prove the lower bound Ω
(
n
ε2

)
.

Assume n is even (since we are proving a lower bound, it is fine if we just prove it for every
even n), consider the following class of distributions:

p2i =
1− 100εzi

n

p2i+1 =
1 + 100εzi

n

with zi ∈ {1,−1} for each i ≤ n
2 .

Each distribution could be identified by a vector z of length n
2 . There are 2

n
2 different

possible values for z, and therefore there are 2
n
2 different possible distributions in the class

defined above.

Intuition: we need to learn ≥ 99% for the zi’s to be within ε in total variation distance,
since for each zi that we get wrong, it contributes 200ε

n to the total variation distance.

Further intuition: conditioned on the “bucket” bi = {2i, 2i+ 1}, we get Bernoulli(1−50εzi
2 ).

So we need Ω( 1
ε2
) samples learn each zi. However, sample falls into bucket bi with probability

O( 1n) (so, in expectation, need Ω( n
ε2
) samples to learn for a bucket). Also, we need to learn

this for ≥ 99% · n
2 many i’s. Formalizing this is trickier.

Lemma 12.3 Learning a distribution in the above class with probability at least 2
3 requires

Ω( n
ε2
) samples.

Proof. Consider an arbitrary algorithm A outputting Pw or just w, where w is a vector of
length n

2 in the form of z defined above.

Claim: Without loss of generality, A depends only on histogram

Yi =
%

j

1{xj = i}

Proof of claim: consider an algorithm A′ that takes the histogram, generates a random
ordering of samples based on the histogram, and feed it into A. A′s input has exactly the
same distribution as D⊗m.

Consider drawing z uniformly at random, i.e. each zi is drawn iid from Bernoulli
(
1
2

)
.

We want to analyze the number of wrong coordinates in w = A(Y1, . . . , Yn), that is,,
bucket i 1{wi ∕= zi}.

Note: zi is random, {xi} are random even conditioning on z, and w might be random even
conditioned on (x1, . . . , xm).

We want to prove that

P
!%

1{wi ∕= zi} > 0.01 · n
2

"
>

1

3

⇐⇒ P
!
# correct coordinates > 0.99 · n

2

"
<

2

3

Note that the sum
,

1{wi ∕= zi} is not a sum of independent terms, so we can’t use any
of the exponential tail bounds that we’ve seen before. The reason why it is not a sum of
independent terms is that:
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• wi might depend on samples from buckets other than the ith bucket.

• The buckets themselves are correlated. In particular, any two distinct buckets i ∕= j
are not independent. This is because the total samples need to sum up to m. (next
week we will see a trick called Poissonisation that resolves this issue)

Goal: show that the expected number of correct coordinates ≈ 1
2 ·

n
2 for m = 1

100 ·
n
ε2

(which
means the number of incorrect coordinates will also be roughly a half). Then by Markov’s
we will be able to show that

P
!
# correct coordinates > 0.99 · n

2

"
≤

1
2

0.99
≤ 2

3

We compute

E

-
%

i

1{wi ∕= zi}
.
=

%

i

E
/
E
/
1{wi ∕= zi} | B1, B2, . . . , Bn

2

00

where Bi = the number of samples in bucket i = Y2i + Y2i+1.

Claim 12.4

E
/
1{wi ∕= zi} | B1, B2, . . . , Bn

2

0
≥ 1

2
−O(ε) ·

1
Bi

Assuming Claim 12.4, then we can compute the lower bound proof:

E

-
%

i

1{wi ∕= zi}
.
≥

%

i

1

2
−O(ε) · E

1
Bi

=
n

4
−O(ε) ·

%

i

E
1

Bi

≥ n

4
−O(ε) ·

%

i

1
EBi by Jensen’s

=
n

4
−O(ε) ·

%

i

2
2m

n

= n

*
1

4
−O(ε) ·

2
2m

n

+

If m = n
O(ε2)

, then last line ≈ n
4 = 1

2 ·
n
2 , then we are done, by applying Markov’s, as stated

earlier.

So what remains is to show that Claim 12.4 is correct.

Proof of Claim 12.4:

Rewrite
E
/
1{wi ∕= zi} | B1, B2, . . . , Bn

2

0

further as

E
/
E
/
1{wi ∕= zi} | B1, B2, . . . , Bn

2
, Z−i, samples outside bucket i

00
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where z−i means all zj with j ∕= i, and the outer expectation is over z−i, samples outside
bucket i, conditioned on B1, . . . , Bn

2
.

Fix z−i, samples outside bucket i, and Bi, then algorithm A just takes Bi samples in bucket
i and outputs the vector w (we only care about wi, and in particular we want a lower
bound for P (wi ∕= zi) ). In other words, A takes Bi samples from Bernoulli

(
1−100εzi

2

)
and

outputs wi, hoping that wi = zi. This is similar to distinguishing between coin flips of two
distributions, except that this time zi is uniformly drawn, instead of adversarially picked.

Thus, it suffices to prove the following claim:

Claim 12.5 Pick q = 1±100ε
2 uniformly (denoted as q+, q−, respectively). Take m samples

iid. from Bernoulli(q) (m corresponds to Bi in previous parts). Then for any algorithm A′,

P
(
A′(samples) ∕= q

)
≥ 1

2
−O(ε) ·

√
m

Proof of Claim 12.5:
By Theorem 11.1, we know

P
(
A′ = q+ | q = q+

)
− P

(
A′ = q+ | q = q−

)
≤ dTV

(
Bernoulli(q+)

⊗m,Bernoulli(q−)
⊗m

)

L.H.S. =
1− P

(
A′ = q− | q = q+

)
− P

(
A′ = q+ | q = q−

)

R.H.S. ≤ (by Fact 11.7)

√
m · dH (Bernoulli(q+),Bernoulli(q−)) =

√
m ·O(ε)

Now we have

1

2

(
1−

√
m ·O(ε)

)
≤ 1

2

(
P
(
A′ = q− | q = q+

)
+ P

(
A′ = q+ | q = q−

))

= P
(
A′ ∕= q | q = Unif{q±}

)

which is exactly what we are trying to show.

Theorem 12.6 Any algorithm learning discrete distributions over [n] to within total vari-

ation distance error ε with probability at least 1− δ requires Ω
!
n+log 1

δ
ε2

"
samples.

Proof. Apply Lemma 12.3 and the lower bound Ω
!
log 1

δ
ε2

"
which we proved earlier.

4 DKW Inequality

We will end with stating the DKW Inequality, which concerns learning a distribution in
Kolmogorov distance.

Definition 12.7 (Kolmogorov Distance) ℓ∞ distance between the CDFs

dK(p,q) = sup
x

|p (−∞, x]− q (−∞, x]|
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Theorem 12.8 (DKW Inequality) Given any distribution p on R (not necessarily discrete),
consider

p̂m = m-sample empirical CDF

Then
P (dK (p̂m,p) > ε) ≤ 2e−2me2

So to learn p within ε in dk, we only need O
!
log 1

δ
ε2

"
samples.
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